|
void | zairy (const double &zr, const double &zi, const long &id, const long &kode, double &air, double &aii, long &nz, long &ierr) |
|
void | zbiry (const double &zr, const double &zi, const long &id, const long &kode, double &bir, double &bii, long &ierr) |
|
void | zbesi (const double &zr, const double &zi, const double &fnu, const long &kode, const long &n, double *cyr, double *cyi, long &nz, long &ierr) |
| Compute Bessel I function of a complex argument.
|
|
void | zbesj (const double &zr, const double &zi, const double &fnu, const long &kode, const long &n, double *cyr, double *cyi, long &nz, long &ierr) |
| Compute Bessel J function of a complex argument.
|
|
void | zbesk (const double &zr, const double &zi, const double &fnu, const long &kode, const long &n, double *cyr, double *cyi, long &nz, long &ierr) |
| Compute Bessel K function of a complex argument.
|
|
void | zbesy (const double &zr, const double &zi, const double &fnu, const long &kode, const long &n, double *cyr, double *cyi, long &nz, double *cwrkr, double *cwrki, long &ierr) |
| Compute Bessel Y function of a complex argument.
|
|
void | zbesh (const double &zr, const double &zi, const double &fnu, const long &kode, const long &m, const long &n, double *cyr, double *cyi, long &nz, long &) |
| Compute Bessel H function of a complex argument.
|
|
void zbesh |
( |
const double & |
zr, |
|
|
const double & |
zi, |
|
|
const double & |
fnu, |
|
|
const long & |
kode, |
|
|
const long & |
m, |
|
|
const long & |
n, |
|
|
double * |
cyr, |
|
|
double * |
cyi, |
|
|
long & |
nz, |
|
|
long & |
|
|
) |
| |
Compute Bessel H function of a complex argument.
On kode=1, zbesj computes an n member sequence of complex Bessel functions cy(i)=H(fnu+i-1,z) for real, nonnegative orders fnu+i-1, i=1,...,n and complex z in the cut plane -pi < arg(z) < pi. On kode=2, cbesj returns the scaled functions cy(i)=exp(-abs(y))*H(fnu+i-1,z) i = 1,...,n , y=aimag(z) which remove the exponential growth in both the upper and lower half planes for z to infinity. Definitions and notation are found in the nbs handbook of mathematical functions.
- Parameters
-
[in] | zr,zi | z=cmplx(zr,zi), -pi < arg(z) <= pi |
[in] | fnu | order of initial j function, fnu >= 0.0d0 |
[in] | kode | a parameter to indicate the scaling option kode = 1 returns cy(i)=H(fnu+i-1,z), i=1,...,n = 2 returns cy(i)=H(fnu+i-1,z)exp(-abs(y)), i=1,...,n |
[in] | n | number of members of the sequence, n >= 1 |
[in] | m | type of the Hankel function m = 1 H(z) = J(z) + j H(z) m = 2 H(z) = J(z) - j H(z) |
[out] | cyr,cyi | double precision vectors whose first n components contain real and imaginary parts for the sequence cy(i)=H(fnu+i-1,z) or cy(i)=H(fnu+i-1,z)exp(-abs(y)) i=1,...,n depending on kode, y=aimag(z). |
[out] | nz | number of components set to zero due to underflow, nz = 0 normal return nz > 0 last nz components of cy set zero due to underflow, cy(i)=cmplx(0.0d0,0.0d0), i = n-nz+1,...,n |
[out] | ierr | error flag ierr = 0 normal return - computation completed ierr = 1 input error - no computation ierr = 2 overflow - no computation, aimag(z) too large on kode=1 ierr = 3 cabs(z) or fnu+n-1 large - computation done but losses of signifcance by argument reduction produce less than half of machine accuracy ierr = 4 cabs(z) or fnu+n-1 too large - no computation because of complete losses of significance by argument reduction ierr = 5 error - no computation, algorithm termination condition not met |
void zbesi |
( |
const double & |
zr, |
|
|
const double & |
zi, |
|
|
const double & |
fnu, |
|
|
const long & |
kode, |
|
|
const long & |
n, |
|
|
double * |
cyr, |
|
|
double * |
cyi, |
|
|
long & |
nz, |
|
|
long & |
ierr |
|
) |
| |
Compute Bessel I function of a complex argument.
On kode=1, zbesj computes an n member sequence of complex Bessel functions cy(i)=I(fnu+i-1,z) for real, nonnegative orders fnu+i-1, i=1,...,n and complex z in the cut plane -pi < arg(z) < pi. On kode=2, cbesj returns the scaled functions cy(i)=exp(-abs(y))*I(fnu+i-1,z) i = 1,...,n , y=aimag(z) which remove the exponential growth in both the upper and lower half planes for z to infinity. Definitions and notation are found in the nbs handbook of mathematical functions.
- Parameters
-
[in] | zr,zi | z=cmplx(zr,zi), -pi < arg(z) <= pi |
[in] | fnu | order of initial j function, fnu >= 0.0d0 |
[in] | kode | a parameter to indicate the scaling option kode = 1 returns cy(i)=j(fnu+i-1,z), i=1,...,n = 2 returns cy(i)=j(fnu+i-1,z)exp(-abs(y)), i=1,...,n |
[in] | n | number of members of the sequence, n >= 1 |
[out] | cyr,cyi | double precision vectors whose first n components contain real and imaginary parts for the sequence cy(i)=I(fnu+i-1,z) or cy(i)=I(fnu+i-1,z)exp(-abs(y)) i=1,...,n depending on kode, y=aimag(z). |
[out] | nz | number of components set to zero due to underflow, nz = 0 normal return nz > 0 last nz components of cy set zero due to underflow, cy(i)=cmplx(0.0d0,0.0d0), i = n-nz+1,...,n |
[out] | ierr | error flag ierr = 0 normal return - computation completed ierr = 1 input error - no computation ierr = 2 overflow - no computation, aimag(z) too large on kode=1 ierr = 3 cabs(z) or fnu+n-1 large - computation done but losses of signifcance by argument reduction produce less than half of machine accuracy ierr = 4 cabs(z) or fnu+n-1 too large - no computation because of complete losses of significance by argument reduction ierr = 5 error - no computation, algorithm termination condition not met |
void zbesj |
( |
const double & |
zr, |
|
|
const double & |
zi, |
|
|
const double & |
fnu, |
|
|
const long & |
kode, |
|
|
const long & |
n, |
|
|
double * |
cyr, |
|
|
double * |
cyi, |
|
|
long & |
nz, |
|
|
long & |
ierr |
|
) |
| |
Compute Bessel J function of a complex argument.
On kode=1, zbesj computes an n member sequence of complex Bessel functions cy(i)=J(fnu+i-1,z) for real, nonnegative orders fnu+i-1, i=1,...,n and complex z in the cut plane -pi < arg(z) < pi. On kode=2, cbesj returns the scaled functions cy(i)=exp(-abs(y))*J(fnu+i-1,z) i = 1,...,n , y=aimag(z) which remove the exponential growth in both the upper and lower half planes for z to infinity. Definitions and notation are found in the nbs handbook of mathematical functions.
- Parameters
-
[in] | zr,zi | z=cmplx(zr,zi), -pi < arg(z) <= pi |
[in] | fnu | order of initial j function, fnu >= 0.0d0 |
[in] | kode | a parameter to indicate the scaling option kode = 1 returns cy(i)=J(fnu+i-1,z), i=1,...,n = 2 returns cy(i)=J(fnu+i-1,z)exp(-abs(y)), i=1,...,n |
[in] | n | number of members of the sequence, n >= 1 |
[out] | cyr,cyi | double precision vectors whose first n components contain real and imaginary parts for the sequence cy(i)=J(fnu+i-1,z) or cy(i)=J(fnu+i-1,z)exp(-abs(y)) i=1,...,n depending on kode, y=aimag(z). |
[out] | nz | number of components set to zero due to underflow, nz = 0 normal return nz > 0 last nz components of cy set zero due to underflow, cy(i)=cmplx(0.0d0,0.0d0), i = n-nz+1,...,n |
[out] | ierr | error flag ierr = 0 normal return - computation completed ierr = 1 input error - no computation ierr = 2 overflow - no computation, aimag(z) too large on kode=1 ierr = 3 cabs(z) or fnu+n-1 large - computation done but losses of signifcance by argument reduction produce less than half of machine accuracy ierr = 4 cabs(z) or fnu+n-1 too large - no computation because of complete losses of significance by argument reduction ierr = 5 error - no computation, algorithm termination condition not met |
void zbesk |
( |
const double & |
zr, |
|
|
const double & |
zi, |
|
|
const double & |
fnu, |
|
|
const long & |
kode, |
|
|
const long & |
n, |
|
|
double * |
cyr, |
|
|
double * |
cyi, |
|
|
long & |
nz, |
|
|
long & |
ierr |
|
) |
| |
Compute Bessel K function of a complex argument.
On kode=1, zbesj computes an n member sequence of complex Bessel functions cy(i)=K(fnu+i-1,z) for real, nonnegative orders fnu+i-1, i=1,...,n and complex z in the cut plane -pi < arg(z) < pi. On kode=2, cbesj returns the scaled functions cy(i)=exp(-abs(y))*K(fnu+i-1,z) i = 1,...,n , y=aimag(z) which remove the exponential growth in both the upper and lower half planes for z to infinity. Definitions and notation are found in the nbs handbook of mathematical functions.
- Parameters
-
[in] | zr,zi | z=cmplx(zr,zi), -pi < arg(z) <= pi |
[in] | fnu | order of initial j function, fnu >= 0.0d0 |
[in] | kode | a parameter to indicate the scaling option kode = 1 returns cy(i)=K(fnu+i-1,z), i=1,...,n = 2 returns cy(i)=K(fnu+i-1,z)exp(-abs(y)), i=1,...,n |
[in] | n | number of members of the sequence, n >= 1 |
[out] | cyr,cyi | double precision vectors whose first n components contain real and imaginary parts for the sequence cy(i)=K(fnu+i-1,z) or cy(i)=K(fnu+i-1,z)exp(-abs(y)) i=1,...,n depending on kode, y=aimag(z). |
[out] | nz | number of components set to zero due to underflow, nz = 0 normal return nz > 0 last nz components of cy set zero due to underflow, cy(i)=cmplx(0.0d0,0.0d0), i = n-nz+1,...,n |
[out] | ierr | error flag ierr = 0 normal return - computation completed ierr = 1 input error - no computation ierr = 2 overflow - no computation, aimag(z) too large on kode=1 ierr = 3 cabs(z) or fnu+n-1 large - computation done but losses of signifcance by argument reduction produce less than half of machine accuracy ierr = 4 cabs(z) or fnu+n-1 too large - no computation because of complete losses of significance by argument reduction ierr = 5 error - no computation, algorithm termination condition not met |
void zbesy |
( |
const double & |
zr, |
|
|
const double & |
zi, |
|
|
const double & |
fnu, |
|
|
const long & |
kode, |
|
|
const long & |
n, |
|
|
double * |
cyr, |
|
|
double * |
cyi, |
|
|
long & |
nz, |
|
|
double * |
cwrkr, |
|
|
double * |
cwrki, |
|
|
long & |
ierr |
|
) |
| |
Compute Bessel Y function of a complex argument.
On kode=1, zbesj computes an n member sequence of complex Bessel functions cy(i)=Y(fnu+i-1,z) for real, nonnegative orders fnu+i-1, i=1,...,n and complex z in the cut plane -pi < arg(z) < pi. On kode=2, cbesj returns the scaled functions cy(i)=exp(-abs(y))*Y(fnu+i-1,z) i = 1,...,n , y=aimag(z) which remove the exponential growth in both the upper and lower half planes for z to infinity. Definitions and notation are found in the nbs handbook of mathematical functions.
- Parameters
-
[in] | zr,zi | z=cmplx(zr,zi), -pi < arg(z) <= pi |
[in] | fnu | order of initial j function, fnu >= 0.0d0 |
[in] | kode | a parameter to indicate the scaling option kode = 1 returns cy(i)=Y(fnu+i-1,z), i=1,...,n = 2 returns cy(i)=Y(fnu+i-1,z)exp(-abs(y)), i=1,...,n |
[in] | n | number of members of the sequence, n >= 1 |
[out] | cyr,cyi | double precision vectors whose first n components contain real and imaginary parts for the sequence cy(i)=Y(fnu+i-1,z) or cy(i)=Y(fnu+i-1,z)exp(-abs(y)) i=1,...,n depending on kode, y=aimag(z). |
[out] | nz | number of components set to zero due to underflow, nz = 0 normal return nz > 0 last nz components of cy set zero due to underflow, cy(i)=cmplx(0.0d0,0.0d0), i = n-nz+1,...,n |
[out] | ierr | error flag ierr = 0 normal return - computation completed ierr = 1 input error - no computation ierr = 2 overflow - no computation, aimag(z) too large on kode=1 ierr = 3 cabs(z) or fnu+n-1 large - computation done but losses of signifcance by argument reduction produce less than half of machine accuracy ierr = 4 cabs(z) or fnu+n-1 too large - no computation because of complete losses of significance by argument reduction ierr = 5 error - no computation, algorithm termination condition not met |