PLaSK library
Loading...
Searching...
No Matches
iterative_matrix.hpp
Go to the documentation of this file.
1
/*
2
* This file is part of PLaSK (https://plask.app) by Photonics Group at TUL
3
* Copyright (c) 2022 Lodz University of Technology
4
*
5
* This program is free software: you can redistribute it and/or modify
6
* it under the terms of the GNU General Public License as published by
7
* the Free Software Foundation, version 3.
8
*
9
* This program is distributed in the hope that it will be useful,
10
* but WITHOUT ANY WARRANTY; without even the implied warranty of
11
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12
* GNU General Public License for more details.
13
*/
14
#ifndef PLASK_COMMON_FEM_ITERATIVE_MATRIX_H
15
#define PLASK_COMMON_FEM_ITERATIVE_MATRIX_H
16
17
#include <algorithm>
18
19
#include <nspcg/nspcg.hpp>
20
21
#include "
matrix.hpp
"
22
23
namespace
plask
{
24
25
struct
IterativeMatrixParams
{
27
enum
Accelelator
{
28
ACCEL_CG
,
29
ACCEL_SI
,
30
ACCEL_SOR
,
31
ACCEL_SRCG
,
32
ACCEL_SRSI
,
33
ACCEL_BASIC
,
34
ACCEL_ME
,
35
ACCEL_CGNR
,
36
ACCEL_LSQR
,
37
ACCEL_ODIR
,
38
ACCEL_OMIN
,
39
ACCEL_ORES
,
40
ACCEL_IOM
,
41
ACCEL_GMRES
,
42
ACCEL_USYMLQ
,
43
ACCEL_USYMQR
,
44
ACCEL_LANDIR
,
45
ACCEL_LANMIN
,
46
ACCEL_LANRES
,
47
ACCEL_CGCR
,
48
ACCEL_BCGS
49
};
50
Accelelator
accelerator
=
ACCEL_CG
;
51
53
enum
Preconditioner
{
54
PRECOND_RICH
,
55
PRECOND_JAC
,
56
PRECOND_LJAC
,
57
PRECOND_LJACX
,
58
PRECOND_SOR
,
59
PRECOND_SSOR
,
60
PRECOND_IC
,
61
PRECOND_MIC
,
62
PRECOND_LSP
,
63
PRECOND_NEU
,
64
PRECOND_LSOR
,
65
PRECOND_LSSOR
,
66
PRECOND_LLSP
,
67
PRECOND_LNEU
,
68
PRECOND_BIC
,
69
PRECOND_BICX
,
70
PRECOND_MBIC
,
71
PRECOND_MBICX
72
};
73
Preconditioner
preconditioner
=
PRECOND_IC
;
74
75
int
maxit
= 1000;
76
double
maxerr
= 1
e
-6;
77
int
nfact
= 10;
78
79
int
ns1
= 5;
80
int
ns2
= 100000;
81
int
lvfill
= 0;
82
int
ltrunc
= 0;
83
int
ndeg
= 1;
84
double
omega
= 1.0;
85
86
enum
NoConvergenceBehavior
{
NO_CONVERGENCE_ERROR
,
NO_CONVERGENCE_WARNING
,
NO_CONVERGENCE_CONTINUE
};
87
NoConvergenceBehavior
no_convergence_behavior
=
NO_CONVERGENCE_WARNING
;
89
90
// Output parameters
91
bool
converged
=
true
;
92
int
iters
= 0;
93
double
err
= 0;
94
};
95
96
struct
SparseMatrix
:
FemMatrix
{
97
typedef
void
(*
NspcgFunc
)(...);
98
99
protected
:
100
int
*
icords
;
101
102
IterativeMatrixParams
*
params
;
103
104
const
int
nstore
,
ndim
,
mdim
;
105
106
int
ifact
= 1;
107
int
nw
= 0,
inw
= 0;
108
double
*
wksp
=
nullptr
;
109
int
*
iwksp
=
nullptr
;
110
int
kblsz
= -1,
nbl2d
= -1;
111
112
virtual
NspcgFunc
get_preconditioner
() = 0;
113
114
virtual
int
get_maxnz
()
const
{
return
mdim
; }
115
116
public
:
117
template
<
typename
SolverT>
118
SparseMatrix
(
SolverT
*
solver
,
size_t
rank
,
size_t
size
,
size_t
isiz
)
119
:
FemMatrix
(
solver
,
rank
,
size
),
120
icords
(
aligned_malloc
<
int
>(
isiz
)),
121
params
(&
solver
->iter_params),
122
nstore
(2),
123
ndim
(
rank
),
124
mdim
(
isiz
) {}
125
126
template
<
typename
SolverT>
127
SparseMatrix
(
SolverT
*
solver
,
size_t
rank
,
size_t
size
)
128
:
FemMatrix
(
solver
,
rank
,
size
),
129
icords
(
aligned_malloc
<
int
>(2 *
size
)),
130
params
(&
solver
->iter_params),
131
nstore
(4),
132
ndim
(
size
),
133
mdim
(
size
) {}
134
135
~SparseMatrix
() {
136
aligned_free<int>
(
icords
);
137
aligned_free<double>
(
wksp
);
138
aligned_free<int>
(
iwksp
);
139
}
140
141
void
solverhs
(
DataVector<double>
& B,
DataVector<double>
& X)
override
{
142
iparm_t
iparm
;
143
rparm_t
rparm
;
144
nspcg_dfault
(
iparm
,
rparm
);
145
146
iparm
.nstore =
nstore
;
147
iparm
.itmax =
params
->
maxit
;
148
iparm
.ipropa = 0;
149
iparm
.ifact = (--
ifact
) ? 0 : 1;
150
if
(
ifact
<= 0)
ifact
=
params
->
nfact
;
151
rparm
.zeta =
params
->
maxerr
;
152
153
iparm
.ns1 =
params
->
ns1
;
154
iparm
.ns2 =
params
->
ns2
;
155
iparm
.lvfill =
params
->
lvfill
;
156
iparm
.ltrunc =
params
->
ltrunc
;
157
iparm
.ndeg =
params
->
ndeg
;
158
rparm
.omega =
params
->
omega
;
159
160
iparm
.ns3 =
161
(
params
->
accelerator
==
IterativeMatrixParams::ACCEL_LANMIN
||
params
->
accelerator
==
IterativeMatrixParams::ACCEL_CGCR
)
162
? 40
163
: 0;
164
iparm
.kblsz =
kblsz
;
165
iparm
.nbl2d =
nbl2d
;
166
167
solver
->
writelog
(
LOG_DETAIL
,
"Iterating linear system"
);
168
169
#ifdef NDEBUG
170
iparm
.level = -1;
171
#else
172
iparm
.level = 3;
173
#endif
174
175
int
maxnz
=
get_maxnz
();
176
size_t
default_nw
= 3 *
rank
+ 2 *
params
->
maxit
+
rank
*
maxnz
+ std::max(
kblsz
, 1);
177
size_t
default_inw
=
maxnz
+ std::max(2 *
int
(
rank
),
maxnz
*
maxnz
+
maxnz
);
178
179
if
(
nw
<
default_nw
) {
180
nw
=
default_nw
;
181
aligned_free<double>
(
wksp
);
182
wksp
=
aligned_malloc<double>
(
nw
);
183
iparm
.ifact = 1;
// we need to do factorization with new workspace
184
}
185
186
if
(
inw
<
default_inw
) {
187
inw
=
default_inw
;
188
aligned_free<int>
(
iwksp
);
189
iwksp
=
aligned_malloc<int>
(
inw
);
190
iparm
.ifact = 1;
// we need to do factorization with new workspace
191
}
192
193
// for (size_t r = 0; r < rank; ++r) {
194
// for (size_t c = 0; c < rank; ++c) {
195
// if (std::find(icords, A.icords+(ld+1), std::abs(int(r)-int(c))) == icords+(ld+1) )
196
// std::cout << " . ";
197
// else
198
// std::cout << str((*this))(r, c), "{:8.3f}") << " ";
199
// }
200
// std::cout << " " << str(B[r], "{:8.3f}") << std::endl;
201
// }
202
203
assert
(B.size() ==
rank
);
204
205
DataVector<double>
U;
206
if
(X.data() ==
nullptr
|| X.data() == B.data())
207
U.reset(B.size(), 1.);
208
else
209
U = X;
210
assert
(U.size() == B.size());
211
212
int
ier
;
213
214
// TODO add choice of algorithms and predonditioners
215
216
NspcgFunc
precond_func
,
accel_func
;
217
218
if
((
params
->
accelerator
==
IterativeMatrixParams::ACCEL_SOR
) !=
219
(
params
->
preconditioner
==
IterativeMatrixParams::PRECOND_SOR
||
220
params
->
preconditioner
==
IterativeMatrixParams::PRECOND_LSOR
)) {
221
throw
BadInput
(
solver
->
getId
(),
"SOR oraccelerator must be used with SOR or LSOR preconditioner"
);
222
}
223
if
(
params
->
accelerator
==
IterativeMatrixParams::ACCEL_SRCG
&&
224
params
->
preconditioner
!=
IterativeMatrixParams::PRECOND_SSOR
&&
225
params
->
preconditioner
!=
IterativeMatrixParams::PRECOND_LSSOR
) {
226
throw
BadInput
(
solver
->
getId
(),
"SRCG accelerator must be used with SSOR or LSSOR preconditioner"
);
227
}
228
if
(
params
->
accelerator
==
IterativeMatrixParams::ACCEL_SRSI
&&
229
params
->
preconditioner
!=
IterativeMatrixParams::PRECOND_SSOR
&&
230
params
->
preconditioner
!=
IterativeMatrixParams::PRECOND_LSSOR
) {
231
throw
BadInput
(
solver
->
getId
(),
"SRSI accelerator must be used with SSOR or LSSOR preconditioner"
);
232
}
233
// clang-format off
234
precond_func
= this->
get_preconditioner
();
235
236
switch
(params->
accelerator
) {
237
case
IterativeMatrixParams::ACCEL_CG
:
accel_func
=
nspcg_cg
;
break
;
238
case
IterativeMatrixParams::ACCEL_SI
:
accel_func
=
nspcg_si
;
break
;
239
case
IterativeMatrixParams::ACCEL_SOR
:
accel_func
=
nspcg_sor
;
break
;
240
case
IterativeMatrixParams::ACCEL_SRCG
:
accel_func
=
nspcg_srcg
;
break
;
241
case
IterativeMatrixParams::ACCEL_SRSI
:
accel_func
=
nspcg_srsi
;
break
;
242
case
IterativeMatrixParams::ACCEL_BASIC
:
accel_func
=
nspcg_basic
;
break
;
243
case
IterativeMatrixParams::ACCEL_ME
:
accel_func
=
nspcg_me
;
break
;
244
case
IterativeMatrixParams::ACCEL_CGNR
:
accel_func
=
nspcg_cgnr
;
break
;
245
case
IterativeMatrixParams::ACCEL_LSQR
:
accel_func
=
nspcg_lsqr
;
break
;
246
case
IterativeMatrixParams::ACCEL_ODIR
:
accel_func
=
nspcg_odir
;
break
;
247
case
IterativeMatrixParams::ACCEL_OMIN
:
accel_func
=
nspcg_omin
;
break
;
248
case
IterativeMatrixParams::ACCEL_ORES
:
accel_func
=
nspcg_ores
;
break
;
249
case
IterativeMatrixParams::ACCEL_IOM
:
accel_func
=
nspcg_iom
;
break
;
250
case
IterativeMatrixParams::ACCEL_GMRES
:
accel_func
=
nspcg_gmres
;
break
;
251
case
IterativeMatrixParams::ACCEL_USYMLQ
:
accel_func
=
nspcg_usymlq
;
break
;
252
case
IterativeMatrixParams::ACCEL_USYMQR
:
accel_func
=
nspcg_usymqr
;
break
;
253
case
IterativeMatrixParams::ACCEL_LANDIR
:
accel_func
=
nspcg_landir
;
break
;
254
case
IterativeMatrixParams::ACCEL_LANMIN
:
accel_func
=
nspcg_lanmin
;
break
;
255
case
IterativeMatrixParams::ACCEL_LANRES
:
accel_func
=
nspcg_lanres
;
break
;
256
case
IterativeMatrixParams::ACCEL_CGCR
:
accel_func
=
nspcg_cgcr
;
break
;
257
case
IterativeMatrixParams::ACCEL_BCGS
:
accel_func
=
nspcg_bcgs
;
break
;
258
};
259
// clang-format on
260
261
while
(
true
) {
262
nspcg
(
precond_func
,
accel_func
,
ndim
,
mdim
,
rank
,
maxnz
,
data
,
icords
,
nullptr
,
nullptr
, U.data(),
nullptr
, B.data(),
263
wksp
,
iwksp
,
nw
,
inw
,
iparm
,
rparm
,
ier
);
264
265
// Increase workspace if needed
266
if
(
ier
== -2 &&
nw
) {
267
aligned_free<double>
(
wksp
);
268
wksp
=
aligned_malloc<double>
(
nw
);
269
iparm
.ifact = 1;
// we need to do factorization with new workspace
270
}
else
if
(
ier
== -3 &&
inw
) {
271
aligned_free<int>
(
iwksp
);
272
iwksp
=
aligned_malloc<int>
(
inw
);
273
iparm
.ifact = 1;
// we need to do factorization with new workspace
274
}
else
275
break
;
276
}
277
278
if
(
ier
!= 0) {
279
switch
(
ier
) {
280
case
-1:
throw
ComputationError
(
solver
->
getId
(),
"nonpositive matrix rank {}"
,
rank
);
281
case
-2:
throw
ComputationError
(
solver
->
getId
(),
"insufficient real workspace ({} required)"
,
nw
);
282
case
-3:
throw
ComputationError
(
solver
->
getId
(),
"insufficient integer workspace ({} required)"
,
inw
);
283
case
-4:
throw
ComputationError
(
solver
->
getId
(),
"nonpositive diagonal element in stiffness matrix"
);
284
case
-5:
throw
ComputationError
(
solver
->
getId
(),
"nonexistent diagonal element in stiffness matrix"
);
285
case
-6:
throw
ComputationError
(
solver
->
getId
(),
"stiffness matrix A is not positive definite"
);
286
case
-7:
throw
ComputationError
(
solver
->
getId
(),
"preconditioned matrix Q is not positive definite"
);
287
case
-8:
throw
ComputationError
(
solver
->
getId
(),
"cannot permute stiffness matrix as requested"
);
288
case
-9:
289
throw
ComputationError
(
solver
->
getId
(),
290
"Number of non-zero diagonals is not large enough to allow expansion of matrix"
);
291
case
-10:
throw
ComputationError
(
solver
->
getId
(),
"inadmissible parameter encountered"
);
292
case
-11:
throw
ComputationError
(
solver
->
getId
(),
"incorrect storage mode for block method"
);
293
case
-12:
throw
ComputationError
(
solver
->
getId
(),
"zero pivot encountered in factorization"
);
294
case
-13:
throw
ComputationError
(
solver
->
getId
(),
"breakdown in direction vector calculation"
);
295
case
-14:
throw
ComputationError
(
solver
->
getId
(),
"breakdown in attempt to perform rotation"
);
296
case
-15:
throw
ComputationError
(
solver
->
getId
(),
"breakdown in iterate calculation"
);
297
case
-16:
throw
ComputationError
(
solver
->
getId
(),
"unimplemented combination of parameters"
);
298
case
-18:
throw
ComputationError
(
solver
->
getId
(),
"unable to perform eigenvalue estimation"
);
299
case
1:
300
params
->
converged
=
false
;
301
switch
(
params
->
no_convergence_behavior
) {
302
case
IterativeMatrixParams::NO_CONVERGENCE_ERROR
:
303
throw
ComputationError
(
solver
->
getId
(),
"failed to converge in {} iterations (error {})"
,
iparm
.itmax,
304
rparm
.zeta);
305
case
IterativeMatrixParams::NO_CONVERGENCE_WARNING
:
306
solver
->
writelog
(
LOG_WARNING
,
"Failed to converge in {} iterations (error {})"
,
iparm
.itmax,
307
rparm
.zeta);
308
break
;
309
case
IterativeMatrixParams::NO_CONVERGENCE_CONTINUE
:
310
solver
->
writelog
(
LOG_DETAIL
,
"Did not converge yen in {} iterations (error {})"
,
iparm
.itmax,
311
rparm
.zeta);
312
break
;
313
}
314
break
;
315
case
2:
solver
->
writelog
(
LOG_WARNING
,
"`maxerr` was too small, reset to {}"
, 3.55e-12);
break
;
316
case
3:
317
solver
->
writelog
(
LOG_DEBUG
,
318
"NSPGS: `zbrent` failed to converge in the maximum number of {} iterations (signifies "
319
"difficulty in eigenvalue estimation)"
,
320
std::max(
params
->
maxit
, 50));
321
break
;
322
case
4:
323
solver
->
writelog
(
LOG_DEBUG
,
324
"NSPGS: In `zbrent`, f (a) and f (b) have the same sign (signifies difficulty in "
325
"eigenvalue estimation)"
);
326
break
;
327
case
5:
solver
->
writelog
(
LOG_DEBUG
,
"NSPGS: Negative pivot encountered in factorization"
);
break
;
328
}
329
}
330
if
(
ier
!= 1) {
331
solver
->
writelog
(
LOG_DETAIL
,
"Converged after {} iterations (error {})"
,
iparm
.itmax,
rparm
.zeta);
332
params
->
converged
=
true
;
333
}
334
335
params
->
iters
=
iparm
.itmax;
336
params
->
err
=
rparm
.zeta;
337
338
if
(X.data() != U.data()) X = U;
339
}
340
341
void
mult
(
const
DataVector<const double>
& vector,
DataVector<double>
&
result
)
override
{
342
std::fill(
result
.begin(),
result
.end(), 0.);
343
addmult
(vector,
result
);
344
}
345
};
346
347
struct
SparseBandMatrix
:
SparseMatrix
{
354
template
<
typename
SolverT>
355
SparseBandMatrix
(
SolverT
*
solver
,
size_t
rank
,
size_t
major
) :
SparseMatrix
(
solver
,
rank
, 5 *
rank
, 5) {
356
icords
[0] = 0;
357
icords
[1] = 1;
358
icords
[2] =
major
- 1;
359
icords
[3] =
major
;
360
icords
[4] =
major
+ 1;
361
kblsz
=
major
- 1;
362
nbl2d
=
major
- 1;
363
}
364
372
template
<
typename
SolverT>
373
SparseBandMatrix
(
SolverT
*
solver
,
size_t
rank
,
size_t
major
,
size_t
minor) :
SparseMatrix
(
solver
,
rank
, 14 *
rank
, 14) {
374
icords
[0] = 0;
375
icords
[1] = 1;
376
icords
[2] = minor - 1;
377
icords
[3] = minor;
378
icords
[4] = minor + 1;
379
icords
[5] =
major
- minor - 1;
380
icords
[6] =
major
- minor;
381
icords
[7] =
major
- minor + 1;
382
icords
[8] =
major
- 1;
383
icords
[9] =
major
;
384
icords
[10] =
major
+ 1;
385
icords
[11] =
major
+ minor - 1;
386
icords
[12] =
major
+ minor;
387
icords
[13] =
major
+ minor + 1;
388
kblsz
= minor - 1;
389
nbl2d
=
major
- minor - 1;
390
}
391
398
template
<
typename
SolverT>
399
SparseBandMatrix
(
SolverT
*
solver
,
size_t
rank
, std::initializer_list<int>
bands
)
400
:
SparseMatrix
(
solver
,
rank
,
bands
.
size
() *
rank
,
bands
.
size
()) {
401
size_t
i = 0;
402
for
(
int
band
:
bands
)
icords
[i++] =
band
;
403
assert
(
icords
[0] == 0);
404
}
405
412
double
&
operator()
(
size_t
r,
size_t
c)
override
{
413
if
(r == c)
return
data
[r];
414
if
(r < c)
std::swap
(r, c);
415
size_t
i = std::find(
icords
,
icords
+
mdim
, r - c) -
icords
;
416
assert
(i !=
mdim
);
417
return
data
[c +
rank
* i];
418
}
419
420
void
addmult
(
const
DataVector<const double>
& vector,
DataVector<double>
&
result
)
override
{
421
for
(
size_t
r = 0; r <
rank
; ++r) {
422
result
[r] +=
data
[r] * vector[r];
423
}
424
for
(
size_t
d = 1; d <
mdim
; ++d) {
425
size_t
sd
=
rank
* d;
426
for
(
size_t
r = 0; r <
rank
; ++r) {
427
size_t
c = r +
icords
[d];
428
if
(c >=
rank
)
break
;
429
result
[r] +=
data
[r +
sd
] * vector[c];
430
result
[c] +=
data
[r +
sd
] * vector[r];
431
}
432
}
433
}
434
435
protected
:
436
NspcgFunc
get_preconditioner
()
override
{
437
switch
(
params
->
preconditioner
) {
438
case
IterativeMatrixParams::PRECOND_RICH
:
return
nspcg_rich2
;
439
case
IterativeMatrixParams::PRECOND_JAC
:
return
nspcg_jac2
;
440
case
IterativeMatrixParams::PRECOND_LJAC
:
return
nspcg_ljac2
;
441
case
IterativeMatrixParams::PRECOND_LJACX
:
return
nspcg_ljacx2
;
442
case
IterativeMatrixParams::PRECOND_SOR
:
return
nspcg_sor2
;
443
case
IterativeMatrixParams::PRECOND_SSOR
:
return
nspcg_ssor2
;
444
case
IterativeMatrixParams::PRECOND_IC
:
return
nspcg_ic2
;
445
case
IterativeMatrixParams::PRECOND_MIC
:
return
nspcg_mic2
;
446
case
IterativeMatrixParams::PRECOND_LSP
:
return
nspcg_lsp2
;
447
case
IterativeMatrixParams::PRECOND_NEU
:
return
nspcg_neu2
;
448
case
IterativeMatrixParams::PRECOND_LSOR
:
return
nspcg_lsor2
;
449
case
IterativeMatrixParams::PRECOND_LSSOR
:
return
nspcg_lssor2
;
450
case
IterativeMatrixParams::PRECOND_LLSP
:
return
nspcg_llsp2
;
451
case
IterativeMatrixParams::PRECOND_LNEU
:
return
nspcg_lneu2
;
452
case
IterativeMatrixParams::PRECOND_BIC
:
return
nspcg_bic2
;
453
case
IterativeMatrixParams::PRECOND_BICX
:
return
nspcg_bicx2
;
454
case
IterativeMatrixParams::PRECOND_MBIC
:
return
nspcg_mbic2
;
455
case
IterativeMatrixParams::PRECOND_MBICX
:
return
nspcg_mbicx2
;
456
};
457
assert
(
NULL
);
458
return
nullptr
;
459
}
460
461
public
:
462
void
setBC
(
DataVector<double>
& B,
size_t
r,
double
val)
override
{
463
data
[r] = 1.;
464
B[r] = val;
465
// above diagonal
466
for
(ptrdiff_t i =
mdim
- 1; i > 0; --i) {
467
ptrdiff_t c = r -
icords
[i];
468
if
(c >= 0) {
469
ptrdiff_t
ii
= c +
rank
* i;
470
assert
(
ii
<
size
);
471
B[c] -=
data
[
ii
] * val;
472
data
[
ii
] = 0.;
473
}
474
}
475
// below diagonal
476
for
(ptrdiff_t i = 1; i <
mdim
; ++i) {
477
ptrdiff_t c = r +
icords
[i];
478
if
(c <
rank
) {
479
size_t
ii
= r +
rank
* i;
480
assert
(
ii
<
size
);
481
B[c] -=
data
[
ii
] * val;
482
data
[
ii
] = 0.;
483
}
484
}
485
}
486
};
487
488
struct
SparseFreeMatrix
:
SparseMatrix
{
489
int
inz
;
490
int
*
const
ir
;
491
int
*
const
ic
;
492
499
template
<
typename
SolverT>
500
SparseFreeMatrix
(
SolverT
*
solver
,
size_t
rank
,
size_t
maxnz
)
501
:
SparseMatrix
(
solver
,
rank
,
maxnz
),
inz
(
rank
),
ir
(
icords
),
ic
(
icords
+
maxnz
) {
502
assert
(
maxnz
>=
rank
);
503
for
(
size_t
i = 0; i <
rank
; ++i)
ir
[i] = i + 1;
504
for
(
size_t
i = 0; i <
rank
; ++i)
ic
[i] = i + 1;
505
if
(
params
->
preconditioner
==
IterativeMatrixParams::PRECOND_IC
)
506
params
->
preconditioner
=
IterativeMatrixParams::PRECOND_JAC
;
507
}
508
515
double
&
operator()
(
size_t
r,
size_t
c)
override
{
516
if
(r == c)
return
data
[r];
517
if
(r > c)
std::swap
(r, c);
518
assert
(
inz
<
size
);
519
ir
[
inz
] = r + 1;
520
ic
[
inz
] = c + 1;
521
return
data
[
inz
++];
522
}
523
524
void
clear
()
override
{
525
std::fill_n(
data
,
size
, 0.);
526
inz
=
rank
;
527
}
528
529
void
addmult
(
const
DataVector<const double>
& vector,
DataVector<double>
&
result
)
override
{
530
for
(
size_t
i = 0; i <
rank
; ++i) {
531
result
[i] +=
data
[i] * vector[i];
532
}
533
for
(
size_t
i =
rank
; i <
inz
; ++i) {
534
size_t
r =
ir
[i] - 1, c =
ic
[i] - 1;
535
result
[r] +=
data
[i] * vector[c];
536
result
[c] +=
data
[i] * vector[r];
537
}
538
}
539
540
protected
:
541
NspcgFunc
get_preconditioner
()
override
{
542
switch
(
params
->
preconditioner
) {
543
case
IterativeMatrixParams::PRECOND_RICH
:
return
nspcg_rich4
;
544
case
IterativeMatrixParams::PRECOND_JAC
:
return
nspcg_jac4
;
545
case
IterativeMatrixParams::PRECOND_LSP
:
return
nspcg_lsp4
;
546
case
IterativeMatrixParams::PRECOND_NEU
:
return
nspcg_neu4
;
547
default
:
throw
NotImplemented
(
"preconditioner not implemented for non-rectangular or masked mesh"
);
548
};
549
assert
(
NULL
);
550
}
551
552
int
get_maxnz
()
const override
{
return
inz
; }
553
554
public
:
555
void
setBC
(
DataVector<double>
& B,
size_t
r,
double
val)
override
{
556
data
[r] = 1
e32
;
557
B[r] = val * 1
e32
;
558
}
559
};
560
561
}
// namespace plask
562
563
#endif
// PLASK_COMMON_FEM_ITERATIVE_MATRIX_H
plask
common
fem
iterative_matrix.hpp
Generated by
1.9.8